检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:M.F.Elettreby Tamer Nabil A.Khawagi
机构地区:[1]Mathematics Department,Faculty of Science,King Khalid University,Abha,9004,Saudi Arabia. [2]Mathematics Department,Faculty of Science,Mansoura University,Mansoura,35516,Egypt. [3]Basic Science Department,Faculty of Computers and Informatics,Suez Canal University,Ismailia,Egypt. [4]Mathematics Department,Faculty of Science and Arts,King Khalid University,Mohayil Asir,Saudi Arabia.
出 处:《Computer Modeling in Engineering & Sciences》2020年第3期907-921,共15页工程与科学中的计算机建模(英文)
基 金:the Deanship of Scientific Research at King Khalid University for funding this work through the Big Research Group Project under grant number(R.G.P2/16/40).
摘 要:In this paper,a discrete Lotka-Volterra predator-prey model is proposed that considers mixed functional responses of Holling types I and III.The equilibrium points of the model are obtained,and their stability is tested.The dynamical behavior of this model is studied according to the change of the control parameters.We find that the complex dynamical behavior extends from a stable state to chaotic attractors.Finally,the analytical results are clarified by some numerical simulations.
关 键 词:Predator-prey model functional response of Holling type stability and bifurcation analysis chaos.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62