检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵尤彬 刘波[1] 刘华 SHAO You-bin;LIU Bo;LIU Hua
机构地区:[1]东华理工大学测绘工程学院,江西南昌330013 [2]江西省数字国土重点实验室,江西南昌330013
出 处:《测绘》2021年第5期217-222,共6页Surveying and Mapping
摘 要:针对三维激光点云分类中点特征提取邻域大小选择困难问题,本文基于自适应最优邻域尺寸选择实现三维激光点云精细分类。首先使用局部邻域协方差矩阵特征值得到的线性特征、平面性特征和散射性特征构造局部邻域熵函数,通过局部邻域熵函数取最小值时的最佳邻域尺寸计算点云特征描述参数;基于特征描述参数提取点云特征;最后根据递归特征消除法(RFE)筛选出最优特征子集,采用随机森林算法对特征子集进行分类。利用公开标记的Oakland三维激光点云数据集进行实验,结果表明本文点云分类方法的总体分类精度达94.1%,平均F_(1)分数达到76.8%。
关 键 词:三维激光点云分类 自适应最优邻域大小选择 点云特征 随机森林分类
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38