检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:綦磊[1,2] 梁真馨 丁红兵 郑悦 芮小博 张宇 QI Lei;LIANG Zhenxin;DING Hongbing;ZHENG Yue;RUI Xiaobo;ZHANG Yu(Beijing Institute of Spacecraft Environment Engineering,Beijing 100094,China;State Key Laboratory of Precision Measurement Technology and Instrument,Tianjin University,Tianjin 300072,China;School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
机构地区:[1]北京卫星环境工程研究所,北京100094 [2]天津大学精密测试技术及仪器国家重点实验室,天津300072 [3]天津大学电气自动化与信息工程学院,天津300072
出 处:《振动与冲击》2022年第4期110-116,共7页Journal of Vibration and Shock
基 金:国家重点研发计划(2018YFC0808600);国家自然科学基金(51876143)。
摘 要:长期运行在空间环境中的航天器可能由于撞击、振动、老化等因素而发生气体泄漏,在轨泄漏辨识对航天器安全保障具有重要意义。提出了一种基于声发射信号经验模态分解(empirical mode decomposition,EMD)和小波包分解(wavelet packet decomposition,WPD)特征融合的航天器泄漏辨识方法,首先将声发射信号分别通过EMD和WPD分解成为不同频率范围内的子带信号,考虑能量特征误差与不稳定性,提取信号无量纲因子和频率特征参数并应用Relief F算法选取特征。最后,构建支持向量机(support vector machines,SVM)机器学习数据库,训练泄漏分类模型并利用测试集交叉验证模型分类精度。结果表明,EMD和WPD分解特征并行融合分类模型可显著提高辨识精度,最高可达96.9%,且输入特征数量少,是一种具有应用前景的航天器在轨气体泄漏辨识方法。Spacecrafts that have been operating in the space environment for a long time may experience gas leak due to collision, vibration, aging and other factors. Recognition of leakage in-orbit is of great significance to the safety of aerospace. A recognition method of acoustic emission signals was proposed based on the parallel feature fusion of the empirical mode decomposition(EMD) and the wavelet packet decomposition(WPD). Firstly, the acoustic emission signal was decomposed into sub-band signals in different frequency ranges through EMD and WPD, respectively. Taking into account the energy characteristic error and instability, the signal dimensionless factors and frequency characteristic parameters were extracted and the Relief F algorithm was applied to select the features. Finally, support vector machine(SVM) machine learning database was constract to train and test the leakage classification model. The results show that the proposed parallel fusion classification model can significantly improve the identification accuracy up to 96.9%, while the number of input features is small. It is a promising method for identifying spacecraft gas leakage in vacuum environment.
关 键 词:真空泄漏 声发射检测 经验模态分解-小波包分解(EMD-WPD)特征融合 支持向量机(SVM)
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118