基于自组织特征映射网络-随机森林模型的滑坡易发性评价——以江西大余县为例  被引量:13

Evaluation on landslide susceptibility based on self-organizing feature map network and random forest model:A case study of Dayu County of Jiangxi Province

在线阅读下载全文

作  者:何书[1,2] 鲜木斯艳·阿布迪克依木 胡萌 陈康 HE Shu;ABUDIKEYIMU XMSY;HU Meng;CHEN Kang(Jiangxi University of Science and Technology,School Resources Environmental Engineering,Ganzhou,Jiangxi 341000,China;Key Laboratory of Development and Application of Ionic Rare Earth Resources(Jiangxi University of Science and Technology),Ministry of Education,Ganzhou,Jiangxi 341000,China)

机构地区:[1]江西理工大学资源与环境工程学院,江西赣州341000 [2]离子型稀土资源开发及应用教育部重点实验室(江西理工大学),江西赣州341000

出  处:《中国地质灾害与防治学报》2022年第1期132-140,共9页The Chinese Journal of Geological Hazard and Control

基  金:江西省教育厅科学技术研究项目(GJJ180436);江西省自然科学基金面上项目(20171BAB203029)。

摘  要:为深入探讨评价单元和非滑坡样本选取对滑坡易发性预测的影响,构建了一种基于自组织特征映射网络-随机森林模型的滑坡易发性评价模型。该模型针对栅格单元和斜坡单元在滑坡易发性评价中的不足,结合栅格单元和斜坡单元的相互关系,提出了滑坡易发性指数的优化计算方法。在此基础上,基于随机森林Tree Bagger分类器构建滑坡易发性评价模型,通过对比分析自组织特征映射网络和随机方法选取非滑坡样本对评价结果的影响,探讨自组织特征映射网络、随机森林和自组织特征映射网络-随机森林三种评价模型的有效性;将评价模型应用于大余县滑坡易发性评价。结果显示,随机森林模型和自组织特征映射网络-随机森林模型的预测精度较高,分别达到91.19%和94.94%,成功率曲线的AUC值分别为0.822和0.849,表明自组织特征映射网络-随机森林模型具有更高的预测率和成功率,自组织特征映射网络聚类的预测精度虽然有限,但作为非滑坡样本的选择方法,能够有效提高随机森林模型的评价精度。In order to further explore the influence of evaluation units and non-landslide sample selection methods on landslide susceptibility prediction, a landslide susceptibility evaluation model is established based on self-organizing feature map network and random forest model in this paper. According to the relationship between grid units and slope units, an optimized calculation method of landslide susceptibility index is proposed. Aiming at the deficiencies of grid units and slope units in the evaluation of landslide susceptibility, this model proposes an optimized calculation method for landslide susceptibility index based on the relationship between grid cells and slope cells. On this basis, a landslide susceptibility evaluation model was established based on the random forest Tree Bagger classifier. By comparing and analyzing the influence of self-organizing feature map network and random non-landslide sample selection methods on the evaluation results, the effectiveness of the three evaluation models of self-organizing feature map network, random forest and self-organizing feature map network-random forest were discussed. The evaluation model has been applied to the landslide susceptibility evaluation in Dayu County. The results show that the prediction accuracy of random forest and self-organizing feature map network-random forest is higher,reaching 91.19% and 94.94% respectively, and the AUC of success rate curve was 0.822 and 0.849 respectively. It shows that self-organizing feature map network-random forest has higher prediction rate and success rate,although the prediction accuracy of self-organizing feature map network clustering is limited, it can effectively improve the evaluation accuracy of random forest model as the basis for selecting non landslide samples.

关 键 词:斜坡单元 滑坡易发性 自组织特征映射网络 随机森林 非滑坡样本 

分 类 号:P642.2[天文地球—工程地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象