检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:武苗苗 傅友华 WU Miaomiao;FU Youhua(College of Electronic and Optical Engineering and College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
机构地区:[1]南京邮电大学电子与光学工程学院、微电子学院,江苏南京210023 [2]南京邮电大学射频集成与微组装技术国家地方联合工程实验室,江苏南京210023
出 处:《南京邮电大学学报(自然科学版)》2022年第1期45-52,共8页Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基 金:国家自然科学基金(61771257)资助项目。
摘 要:大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统随着天线数的增加,信号检测的计算复杂度随之提高,使用更深层次的神经网络并不会显著提高检测性能,因此设计一种低复杂度、高性能的检测算法尤为重要。文中提出了一种基于深度神经网络的大规模MIMO信号检测算法。该神经网络基于投影梯度下降算法展开,并引入了单调非递增函数,在训练期间可以动态地对权重进行优先级排序,从而保留重要的权重,将不重要的权重进行衰减。为了进一步提高检测性能,防止梯度消失,将单调非递增函数设置为可训练参数,在网络训练中对其值进行优化。仿真结果表明,所提出的学习算法收敛速度快,并且在检测精度方面优于大规模MIMO独立同分布模型(Massive MIMO-independent identically distributed,MMNet-iid)和最小均方误差算法。With the increasing number of antennas in the massive multiple-input multiple-output(MIMO)system,the computational complexity of signal detection rises,while deep neural networks with more layers cannot greatly improve the detection results.Therefore,an algorithm with low complexity and high performance is of significance.In this paper,a deep neural network based massive MIMO signal detection framework is proposed.The neural network is expanded based on the projection gradient descent algorithm,and the monotone non-increasing function is introduced.During the training,the weights can be prioritized dynamically,so that the important weights can be retained and the unimportant ones can be attenuated.In order to further improve the detection performance and prevent the gradient from disappearing,the monotone non-increasing function is set as a trainable parameter,and its value is optimized in the network training.Simulation results show that the proposed learning algorithm converges quickly,and is superior to the massive MIMO-independent identically distributed(MMNet-iid)model and the minimum mean square error algorithm in detection accuracy.
关 键 词:大规模多输入多输出系统 信号检测 深度神经网络 单调非递增函数
分 类 号:TN911.23[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.183.63