检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢亚楠 周森鑫[1] Xie Yanan;Zhou Senxin
机构地区:[1]安徽财经大学管理科学与工程学院,安徽蚌埠233000
出 处:《赤峰学院学报(自然科学版)》2022年第2期32-36,共5页Journal of Chifeng University(Natural Science Edition)
基 金:国家社科基金一般项目(15BGL035);安徽财经大学研究生科研创新基金项目(ACYC2020366)。
摘 要:随着城镇化建设的快速推进,园林工程项目的规模以及复杂程度也在日益增长,然而传统计算工程项目关键路线的方法由于自身的局限性,很难在规模大的项目中找出最优路线。因此,在工程网络图的基础上,提出基于DQN(Deep Q Network)的工程进度管理方法,通过构建神经网络,将大量的历史数据输入进去,让计算机来计算关键线路,进而预测施工周期,并以某公园为例进行实验仿真分析。实验表明此算法在应对规模较大的项目时,计算关键线路更加准确,效率也更高,可以帮助施工单位快速找到最优策略,有效减少由于不确定性因素造成的工期延误以及资金的损失。
关 键 词:深度强化学习 DQN 园林工程进度管理 工程网络图
分 类 号:TU986.3[建筑科学—城市规划与设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249