Symmetry and monotonicity of positive solutions to Schr?dinger systems with fractional p-Laplacians  

在线阅读下载全文

作  者:MA Ling-wei ZHANG Zhen-qiu 

机构地区:[1]School of Mathematical Sciences,Tianjin Normal University,Tianjin 300387,China [2]School of Mathematical Sciences and LPMC,Nankai University,Tianjin 300071,China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2022年第1期52-72,共21页高校应用数学学报(英文版)(B辑)

基  金:Supported by the National Natural Science Foundation of China(12101452,12071229,11771218)。

摘  要:In this paper,we first establish narrow region principle and decay at infinity theorems to extend the direct method of moving planes for general fractional p-Laplacian systems.By virtue of this method,we investigate the qualitative properties of positive solutions for the following Schrodinger system with fractional p-Laplacian{(-△)^(s)_(p)u+au^(p-1)=f(u,v),(-△)^(t)_(p)v+bv(p-1)=g(u,v),where 0<s,t<1 and 2<p<∞.We obtain the radial symmetry in the unit ball or the whole space R^(N)(N≥2),the monotonicity in the parabolic domain and the nonexistence on the half space for positive solutions to the above system under some suitable conditions on f and g,respectively.

关 键 词:fractional p-Laplacian Schr?dinger systems direct method of moving planes radial symmetry MONOTONICITY NONEXISTENCE 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象