基于外部载荷位置预测的光纤传感器故障信号识别技术  被引量:3

Optical Fiber Sensor Fault Signal Recognition Technology Based on External Load Position Prediction

在线阅读下载全文

作  者:李颜瑞[1] 唐婧壹 LI Yanrui;TANG Jingyi(Department of Information&Engineering,Shanxi Institute 0f Mechanical&Electrical Engineering,Changzhi Shanxi 046011,China)

机构地区:[1]山西机电职业技术学院信息工程系,山西长治046011

出  处:《传感技术学报》2021年第12期1663-1668,共6页Chinese Journal of Sensors and Actuators

基  金:山西省高等学校科技创新项目(2020L0755)。

摘  要:为了解决传感器故障识别过程中识别效率低和精度低的问题,提出了基于外部载荷位置预测的光纤传感器故障信号识别方法。通过合成外差算法和傅里叶变换解调和去噪传感器信号;采用本征模函数提取不同故障下信号特征,并将其分为状态信息和扰动分量两部分,计算二者之间的近似性,结合线性模型提取故障信号特征向量;利用系统灰色性故障识别方法和外部载荷位置预测传感器多角度负载并进行融合处理,构建灰色关联矩阵计算其与标准数据之间的贴近度,完成光纤传感器故障信号识别。仿真分析结果表明,所提方法在故障信号解调、去噪以及识别方面均具有明显的优势。对深入研究传感器起到了一定的推动作用。In order to solve the problem of low efficiency and low accuracy in sensor fault identification, a fault signal identification method of optical fiber sensor based on external load position prediction is proposed. The sensor signal was demodulated and denoised by synthetic heterodyne algorithm and Fourier transform;The eigenmode function is used to extract the signal features under different faults, which are divided into two parts: state information and disturbance component. The approximation between them is calculated, and the fault signal feature vector is extracted combined with the linear model;The multi angle load of the sensor is predicted and fused by using the system grey fault identification method and the external load position, the grey incidence matrix is constructed, the closeness between it and the standard data is calculated, and the fault signal identification of the optical fiber sensor is completed. The simulation results show that the proposed method has obvious advantages in fault signal demodulation, denoising and identification. It plays a certain role in promoting the in-depth study of the sensor.

关 键 词:外部载荷位置 光纤传感器 本征模函数 线性模型 故障特征 

分 类 号:TN395.2[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象