检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘进[1] Liu Jin(College of Systems Engineering,National University of Defense Technology,Changsha 410073)
出 处:《南京大学学报(数学半年刊)》2021年第2期162-197,共36页Journal of Nanjing University(Mathematical Biquarterly)
基 金:Supported by the National Natural Science Foundation of China(Grant No.11701565);Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ30771).
摘 要:假设φ:M^(n)→N_(n+p)是一般外围流形中的n维子流形,S是该子流形的第二基本型模长的平方,本文构造了S的一-类幂函数型泛函G(_(n,F))(φ)=∫_(M)F(S)dv,其中F:[0,∞)→R为一光滑抽象函数.此泛函抽象刻画了子流形与全测地子流形的差异,并且与Willmore猜想有着密切联系.本文计算了该泛函的第一变分公式,并在单位球面中构造了该泛函临界点的一些例子,进一步,基于两个著名的矩阵不等式,我们推导了泛函临界点的Simons型积分不等式,并基于此给出了间隙现象的讨论.For an n-dimensional submanifold in a general real ambient manifoldφ:M_(n)→N^(n+p),let S denote the square length of second fundamental form ofφ.In this paper,we introduce one abstract functional concerning S as G(_(n,F))(φ)=R M F(S)dv,where F:[0,∞)→R is a smooth abstract function,which measures abstractly how derivationsφ(M)from a totally geodesic submanifold and has a closed relation with the well-known Willmore conjecture.For this functional,the rst variational equation is obtained,and in unit sphere,we construct a few examples of critical points.Moreover,by two famous matrix inequalities,we derive out the Simons'type integral inequalities,and based on which some gap phenomenon have been classified.
关 键 词:第二基本型 Willmore猜想 临界点 Simons型积分不等式 间隙现象
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.149.30