检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张纯[1] 周宇轩 李登鹏 ZHANG Chun;ZHOU Yuxuan;LI Dengpeng(Faculty of Engineering Mechanics,School of Civil Engineering and Architecture,Nanchang University,Nanchang 330031)
机构地区:[1]南昌大学建筑工程学院工程力学系,南昌330031
出 处:《现代隧道技术》2022年第1期80-86,103,共8页Modern Tunnelling Technology
基 金:江西省自然科学基金项目(20202BAB204029);江西省学位与研究生教育教学改革项目(JXYJG-2019-018)。
摘 要:运营地铁隧道的管理、健康监测及维护正逐渐趋向于数字化、智能化;但常因地铁盾构隧道管理和检测单位缺少隧道数字模型,限制了地铁隧道智能维护和管理系统的应用和发展。文章针对地铁盾构隧道中无序排列的管片环结构,提出了一种基于深度学习和机器视觉的地铁盾构隧道数字模型智能重建方法,利用检测车获取的隧道衬砌内表面高清图片,对管片特征物(螺栓孔)进行智能识别与自动分类,再根据螺栓孔群的分布特点自动推断隧道管片环的排版规律,从而结合隧道实际线路实现隧道数字模型快速重建。某地铁隧道的实例应用结果表明,该方法适用于管片无规律性错缝拼装的情况,能以100%的准确率实现地铁盾构隧道数字模型的智能重建。The management, health monitoring and maintenance of operational metro tunnels have been gradually becoming digital and intelligent. However, the lack of digital tunnel models often limits the application and development of intelligent maintenance and management systems for metro shield tunnel management and inspection organizations. This paper proposes an intelligent reconstruction method of the digital model of disordered erected segment ring structure in metro shield tunnels based on deep learning and machine vision, uses high-definition pictures of the inner surface of the tunnel lining obtained by inspection vehicles to intelligently identify and automatically classify the tunnel segment features(bolt holes), and then automatically infers the layout pattern of the tunnel segment rings according to the distribution characteristics of the bolt hole groups, thus achieving rapid reconstruction of the tunnel digital model by combining with the actual tunnel alignment. The application case in a certain metro tunnel shows that the proposed method is applicable to shield tunnels with irregularly and staggered erected segments, and can achieve the intelligent reconstruction of the digital model of the metro shield tunnel with 100% accuracy.
关 键 词:地铁盾构隧道 结构智能识别 深度学习 数字模型重建 机器视觉
分 类 号:U451.4[建筑科学—桥梁与隧道工程] U455.43[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222