Continuous-time Distributed Heavy-ball Algorithm for Distributed Convex Optimization over Undirected and Directed Graphs  被引量:2

在线阅读下载全文

作  者:Hao-Ran Yang Wei Ni 

机构地区:[1]School of Science,Nanchang University,Nanchang 330031,China

出  处:《Machine Intelligence Research》2022年第1期75-88,共14页机器智能研究(英文版)

基  金:supported by National Nature Science Foundation of China (Nos. 61663026, 62066026, 61963028 and 61866023);Jiangxi NSF (No. 20192BAB 207025)。

摘  要:This paper proposes second-order distributed algorithms over multi-agent networks to solve the convex optimization problem by utilizing the gradient tracking strategy, with convergence acceleration being achieved. Both the undirected and unbalanced directed graphs are considered, extending existing algorithms that primarily focus on undirected or balanced directed graphs. Our algorithms also have the advantage of abandoning the diminishing step-size strategy so that slow convergence can be avoided. Furthermore, the exact convergence to the optimal solution can be realized even under the constant step size adopted in this paper. Finally, two numerical examples are presented to show the convergence performance of our algorithms.

关 键 词:Distributed convex optimization second-order distributed algorithm multi-agent systems gradient tracking directed graph 

分 类 号:O224[理学—运筹学与控制论] O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象