检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张捷 ZHANG Jie(South-Central University for Nationalities,Wuhan Hubei 430074,China)
机构地区:[1]中南民族大学,湖北武汉430074
出 处:《信息与电脑》2022年第1期90-93,共4页Information & Computer
摘 要:多用户干扰信道功率控制是无线通信领域的基本问题之一,不仅要求较高的频谱效率,而且还需要较低的计算复杂度。笔者基于注意力机制和卷积神经网络提出AT-UNet深度学习模型,通过在真实信道中测试,发现其性能超越了现有的深度学习方法,媲美经典数学优化算法。同时,笔者进一步将迁移学习运用在模型训练过程中,一定程度上减少了训练集和训练时间,降低了深度学习模型的训练成本。Multi-user interference channel power control is one of the fundamental problems in the field of wireless communication, which not only requires high spectral efficiency, but also requires low computational complexity. The author proposes the AT-UNet deep learning model based on the attention mechanism and convolutional neural network. Tested in the real channel, its performance surpasses the existing deep learning methods and is comparable to the classical mathematical optimization algorithm. At the same time, the author further Applies transfer learning in the model training process, which reduces the training set and training time to a certain extent, and reduces the training cost of the deep learning model.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.175.60