检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭华
机构地区:[1]南宁师范大学计算机与信息工程学院
出 处:《数字技术与应用》2022年第2期23-25,160,共4页Digital Technology & Application
基 金:广西研究生教育创新计划资助项目(YCSW2020194)资助。
摘 要:利用支配和指标度量结合的方式提出一种新的支配关系,通过该支配关系构造出新的多目标优化算法MOEA-PBI,该算法对多目标优化问题进行有效优化,从而得出一组可供选择的折中解。新算法与其他三种代表性的多目标进化算法一同在3,5和8目标的DTLZ基准测试问题上进行测试,结果表明MOEA-PBI算法具有较为优秀的收敛性和多样性。因此得出结论,MOEA-PBI算法是一种可以选择的多目标进化算法。
关 键 词:多目标进化算法 多目标优化算法 基准测试 收敛性和多样性 指标度量 支配关系 MOEA 多目标优化问题
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46