Auxiliary Fault Location on Commercial Equipment Based on Supervised Machine Learning  被引量:1

在线阅读下载全文

作  者:ZHAO Zipiao ZHAO Yongli YAN Boyuan WANG Dajiang 

机构地区:[1]State Key Laboratory of Information Photonics and Optical Communictions,Beijing University of Posts and Telecomunications,Beijing 100876,China [2]ZTE Corporation,Shenzhen 518057,China

出  处:《ZTE Communications》2022年第S01期7-15,共9页中兴通讯技术(英文版)

摘  要:As the fundamental infrastructure of the Internet,the optical network carries a great amount of Internet traffic.There would be great financial losses if some faults happen.Therefore,fault location is very important for the operation and maintenance in optical networks.Due to complex relationships among each network element in topology level,each board in network element level,and each component in board level,the con-crete fault location is hard for traditional method.In recent years,machine learning,es-pecially deep learning,has been applied to many complex problems,because machine learning can find potential non-linear mapping from some inputs to the output.In this paper,we introduce supervised machine learning to propose a complete process for fault location.Firstly,we use data preprocessing,data annotation,and data augmenta-tion in order to process original collected data to build a high-quality dataset.Then,two machine learning algorithms(convolutional neural networks and deep neural networks)are applied on the dataset.The evaluation on commercial optical networks shows that this process helps improve the quality of dataset,and two algorithms perform well on fault location.

关 键 词:optical network fault location supervised machine learning 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TN929.1[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象