检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张丛磊[1,3] 张志国 ZHANG Cong-lei;ZHANG Zhi-guo(College of Arts and Sciences,Shanxi Agricultural University,Jinzhong 030801,China;College of Mathematics and Computer Science,Shanxi Normal University,Taiyuan 030000,China;School of Mathematical Sciences,Hebei Normal University,Shijiazhuang 050024,China)
机构地区:[1]山西农业大学文理学院,山西晋中030801 [2]山西师范大学数学与计算机科学学院,山西太原030000 [3]河北师范大学数学科学学院,河北石家庄050024
出 处:《数学的实践与认识》2022年第2期181-187,共7页Mathematics in Practice and Theory
摘 要:首先提出了简单1维数字流形的概念,接着研究了简单1维数字流形的具有C-相容邻接关系的笛卡尔积空间中的数字图像.进一步,为了研究数字复叠的笛卡尔积的Deck变换群,利用半径2-(k_(i2),k_(i1))-局部同胚的性质来体现数字复叠的笛卡尔积的Deck变换群在从数字拓扑的角度来比较数字积空间时的优势.此外,通过强调C-相容的必要性修正了文献(Han S E.Comparison among digital fundamental groups and its applications[J].Information Sciences,2008,178(8):2091-2104)中的一个错误.利用本文的方法,可以从本质上区分数字积图像,从而使得数字图像的研究内容更加丰富.We firstly propose the notion of simple 1-dimensional digital manifold in this paper.Then we study digital images in Cartesian product space of simple 1-dimensional digital manifolds with the C-compatible adjacency relation.Furthermore,in order to study Deck transformation group of Cartesian product of digital coverings,the paper uses some properties of radius 2(k_(i2),k_(i1))-local homeomorphism and shows the merits of Deck transformation group of a Cartesian product of digital coverings in comparing digital products from the view point of digital topology.Moreover,we correct an error in(Han S E.Comparison among digital fundamental groups and its applications[J].Information Sciences,2008,178(8):2091-2104)by emphasizing the necessity for C-compatible.By this approach,we can substantially distinguish digital products images so that enrich the information of digital images.
关 键 词:简单1维数字流形 C-相容邻接 Deck变换群 半径2-(k_(i2) k_(i1))-局部同胚 (k k')-同伦等价
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248