基于GA_Elman神经网络的长输管道泄漏检测方法  被引量:1

Leakage Detection Method for Long-distance Pipelines Based on GA_Elman Neural Network

在线阅读下载全文

作  者:张勇[1] 韦焱文 王明吉[1] 周兴达 刘洁[1] 杨文武 WEI Yan-wen;WANG Ming-ji;ZHOU Xing-da;LIU Jie;YANG Wen-wu(School of Physics and Electronic Engineering,Northeast Petroleum University)

机构地区:[1]东北石油大学物理与电子工程学院

出  处:《化工自动化及仪表》2022年第2期182-186,245,共6页Control and Instruments in Chemical Industry

基  金:教育部重点实验室开放基金项目(MECOF2019B02)。

摘  要:为提高长输管道泄漏检测的准确率,提出基于GA_Elman神经网络的管道泄漏检测方法,该方法通过使用遗传算法(GA)对Elman神经网络的权值和阈值进行优化,不但克服了Elman神经网络易陷入局部极值的缺陷,而且提高了Elman神经网络的预测精度。实验证明该方法可用于管道泄漏检测,其效果优于BP神经网络与Elman神经网络检测模型,预测精度96.9%。For purpose of improving leakage detection accuracy of long-distance pipelines,the GA_Elman neural network-based leakage detection method for pipelines was proposed,which employs genetic algorithm(GA)to optimize Elman neural network’s weight number and threshold value;and it overcomes the Elman neural network’s defect of being susceptible to falling into local extremum,improves the forecast accuracy of the Elman neural network.The experimental results show that,this method can be used to predict leakage detection of pipelines and its prediction effect outperforms the detection model of both BP neural network and Elman neural network owing to a prediction accuracy of 96.9%.

关 键 词:GA_Elman神经网络 管道 泄漏检测 预测精度 

分 类 号:TP389.1[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象