高动态红外图像自适应增强算法研究  被引量:5

Research on Adaptive Enhancement Algorithm for High Dynamic Infrared Image

在线阅读下载全文

作  者:刘乐 刘勇[1] 赵子伦 李旭 侯雄[2] Liu Le;Liu Yong;Zhao Zilun;Li Xu;Hou Xiong(Beijing Aerospace Institute for Metrology and Measurement Technology,Beijing100076,China;Beijing Aerospace Automatic Control Institute,Beijing100854,China)

机构地区:[1]北京航天计量测试技术研究所,北京100076 [2]北京航天自动控制研究所,北京100854

出  处:《航天控制》2022年第1期64-69,共6页Aerospace Control

摘  要:针对红外图像在军事应用中低对比度、高噪声、细节模糊的缺陷,提出了高动态红外图像自适应增强与压缩算法。该算法基于小波变换将红外图像分成基础层低频信息和细节层高频信息。利用自适应伽马变换对图像基础层的低频信息进行拉伸,并设计门限阈值去除无效灰度值,以提高动态范围内图像的对比度。通过双边滤波对细节层的高频信息进行降噪处理,并将高频信息与低频信息加权融合,以达到最好的处理效果。融合后的高动态范围图像直接线性压缩至低动态范围。实验结果表明,算法能够有效的提升红外图像对比度,并且突出了图像纹理特征。Aiming at the problems of low contrast, blurry edges and high noise of mid-infrared images in military applications, an adaptive enhancement and compression algorithm for high-dynamic infrared images is proposed in this paper. The algorithm is based on wavelet transform to divide the image into low frequency information in the base layer and high frequency information in the detail layer. Adaptive gamma transform is used to stretch the low frequency information of the image base layer, and a threshold is designed to remove the invalid gray value in order to improve the contrast of the image in the dynamic range. The high frequency information of detail layer is denoised by bilateral filtering. The weighted fusion of high-frequency information and low-frequency information after processing is used to achieve the best processing effect. Finally, the fused high dynamic range image is directly and linearly compressed to low dynamic range. The experimental results show that the contrast of infrared images can be effectively improved and the image detail information can be significantly enhanced by using this algorithm.

关 键 词:高动态红外图像 小波变换 自适应伽马变换 双边滤波 

分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象