基于多视图网络三维形状检索的通用扰动攻击  被引量:1

MvUPA:universal perturbation attack against 3D shape retrieval based on multi-view networks

在线阅读下载全文

作  者:唐静 彭伟龙 唐可可 方美娥 TANG Jing;PENG Wei-long;TANG Ke-ke;FANG Mei-e(School of Computer Science and Cyber Engineering,Guangzhou University,Guangzhou Guangdong 510006,China)

机构地区:[1]广州大学计算机科学与网络工程学院,广东广州510006

出  处:《图学学报》2022年第1期93-100,共8页Journal of Graphics

基  金:国家自然科学基金项目(62072126,61772164);广州市科技计划项目(202002030263,202102010419),广州大学校内科研人才培育项目(XJ2021001901)。

摘  要:几何深度学习模型在三维形状检索任务中已应用,其安全评估工作也引起了研究者们的关注。该文针对三维形状检索评估提出一种基于多视图通用扰动攻击(MvUPA)的对抗攻击方法,其具有高成功率的攻击效果。首先设计多视角深度全景图检索模型,训练适用于视图类三维形状检索的高效嵌入向量;其次,为三维形状检索提出有益于通用扰动更新的损失函数方案和攻击机制。该损失函数方案同时融合了三元损失和标签损失,提升了对相近拓扑异类样本和差异拓扑同类样本的对抗扰动生成。通过实验验证了MvUPA在多个视图类检索模型上攻击的有效性和稳定性,攻击指标下降率(DR)最高达94.52%;融合损失函数相比单个损失函数DR指标提高约3.0%~5.5%。Geometric deep learning models have been applied in 3D shape retrieval task successfully,and their security evaluation is also drawing the attention of researchers.This paper proposed a method of multi-view universal perturbation attack(MvUPA)for 3D shape retrieval evaluation,so as to generate perturbed samples with a higher success rate of attack.Firstly,a multi-view depth panoramic map-based network was designed to train an efficient embedding representation for multi-view 3D shape retrieval.Secondly,a fusion loss function and its attack mechanism beneficial to multi-input UPA was proposed.The loss function combined triplet loss and label loss,thereby improving the perturbation generation for different categories of samples with similar topology and same category samples with different topology.The experiments validated the attack effectiveness and stability of MvUPA on multi-view retrieval models.MvUPA brought the decrease rate(DR)up to 94.52%,and the DR of the fused loss function was about 3.0%–5.5%higher than that of a single loss function.

关 键 词:三维形状检索 多视图通用扰动攻击 通用扰动攻击 几何深度学习 融合损失 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象