检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋高腾 刘君强[1] 曹斯言 左洪福[1] SONG Gao-teng;LIU Jun-qiang;CAO Si-yan;ZUO Hong-fu(Nanjing University of Aeronautics and Astronautics,Nanjing 211000,China)
出 处:《航空计算技术》2022年第1期50-54,共5页Aeronautical Computing Technique
基 金:国家自然科学基金项目资助(U1533128);中央高校基本科研业务费项目资助(NS2020050)。
摘 要:为了提高发动机故障诊断精度,利用集成学习异构集成机械学习模型,并使用注意力机制提高模型准确度。利用集成学习理论训练异构的随机森林、卷积神经网络、深度神经网络诊断模型,再将各个子异构学习器的输出值通过注意力调节特征权重,作为输入数据通过决策树训练,得到完整的Stacking异构模型;解决各个神经网络在故障诊断过程中特征值提取不准确或者部分故障诊断不精确的问题。方法采用凯斯西储大学轴承数据集为数据依托,与传统的Stacking集成学习故障诊断模型进行对比,注意力机制的加入,使诊断精度提高5.6%。Aiming at improving the accuracy of engine fault diagnosis,the combination of heterogeneous ensemble learning and attention mechanism is proposed.Firstly,the heterogeneous random forest,CNN and DNN mechanical learning models are trained by using the ensemble learning theory.Secondly,the output value of each sub heterogeneous learner is adjusted by attention,which is used as the input data for training through the decision tree.Finally,the complete stacking heterogeneous model is obtained.The proposed model solves the problem of inaccurate extraction of single eigenvalue or inaccurate partial fault diagnosis in the process of fault diagnosis.The proposed method uses the Case Western Reserve University bearing data set as the data support.Compares with the traditional stacking ensemble learning fault diagnosis model,with the attention mechanism is added,the diagnostic accuracy is improved by 5.6%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49