机构地区:[1]School of Agriculture and Environment,Institute of Agriculture,The University of Western Australia,Perth WA 6009,Australia [2]Perth Zoo,Department of Biodiversity,Conservation and Attractions,Perth WA 6151,Australia [3]Agricultural Officer(Headquarters),Directorate,Soil Fertility Research Institute,Agriculture Department,Government of the Punjab,Lahore 53700,Pakistan
出 处:《Pedosphere》2022年第2期339-347,共9页土壤圈(英文版)
基 金:M. S. A. Khan thanks the Australian Government for providing postgraduate degree scholarship under its Australia Awards Program;The Sir Eric Smart Family contributed funds for this research through the Institute of Agriculture, The University of Western Australia;The salaries of S. N. Jenkins and I. S. Waite were partially supported by RnD4Profit-14-1-022-Waste to Revenue: Novel Fertilisers and Feeds, Australian Pork Limited, and Australian Government (Department of Agriculture and Water Resources) as part of the Rural Research and Development (R&D) for Profit Program。
摘 要:Excess nitrogen(N) fertiliser use in agriculture is associated with water pollution and greenhouse gas emissions.While practices and programs to reduce N fertiliser application continue to be developed,inefficient fertiliser use persists.Practices that reduce mineral N fertiliser application are needed in a sustainable agricultural ecosystem to control leaching and gaseous losses for environmental management.This study evaluated whether fully or partially replacing mineral N fertiliser with zoo compost(Perth Zoo) could be a good mitigation strategy to reduce mineral N fertiliser application without affecting wheat yield and nutrition.To achieve this,a glasshouse experiment was conducted to assess the complementary effect of zoo compost and mineral N fertiliser on wheat yield and nutrition in a sandy soil of southwestern Australia.Additionally,a chlorophyll meter was used to determine whether there was a correlation between chlorophyll content and soil mineral N content,grain N uptake,and grain protein content at the tillering(42 d after sowing(DAS)) and heading(63 DAS) growth stages.The standard practice for N application for this soil type in this area,100 kg ha^(-1),was used with a soil bulk density of 1.3 g cm^(-3) to calculate the amount of mineral N(urea,46% N) and Perth Zoo compost(ZC)(0.69% N) for each treatment.Treatments comprised a control(no nutrients added,T1),mineral N only(100 kg N ha^(-1),T2),ZC only(100 kg N ha^(-1),T7),and combinations of mineral N and ZC at different rates(mineral N at 100 kg N ha^(-1)+ ZC at 25 kg N ha^(-1)(T3),mineral N at 75 kg N ha^(-1)+ ZC at 25 kg N ha^(-1)(T4),mineral N at 75 kg N ha^(-1)+ ZC at 50 kg N ha^(-1)(T5),and mineral N at 50 kg N ha^(-1)+ ZC at 50 kg N ha^(-1)(T6)).The T6 treatment significantly increased grain yield(by 26%) relative to the T2 treatment.However,the T7 treatment did not affect grain yield when compared to the T2 treatment.All treatments with mineral N and ZC in combination significantly improved the 1 000-grain weight compared to the T2 treatment
关 键 词:chlorophyll meter SPAD measurement integrated nutrient management nitrogen use efficiency reduced N fertiliser application wheat yield
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...