检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡剑波[1] 罗志鹏 李峰[2] Hu Jianbo;Luo Zhipeng;Li Feng
机构地区:[1]贵州财经大学经济学院 [2]山西省社会科学院生态文明研究所
出 处:《财经科学》2022年第2期89-101,共13页Finance & Economics
基 金:贵州省2021年度哲学社会科学规划课题重点项目“‘碳达峰’背景下贵州工业碳排放强度及影响因素研究”(21GZZD58)的资助。
摘 要:本文基于LSTM神经网络模型并在一定的经济增长预期下推导预测出我国碳排放强度变化趋势,同时,建立ARIMA-BP神经网络模型作为验证模型对碳排放强度进行直接预测。研究结论为:(1)LSTM神经网络模型在验证集上的均方误差(MSE)为0.00001,平均绝对百分比误差(MAPE)为0.33%,表明模型泛化能力十分优秀,在LSTM神经网络模型预测框架下,中国碳排放强度将在2030年达到0.9237吨/万元,相较于2005年的碳排放强度2.9755吨/万元下降68.96%;(2)在ARIMA-BP神经网络模型的预测分析中,预估中国2030年碳排放强度能够下降至0.9840吨/万元,相较于2005年2.9755吨/万元的碳排放强度下降66.93%;(3)将ARIMA-BP神经网络模型得到的碳排放强度预测值与LSTM神经网络模型进行对比,LSTM模型在预测精度上的表现更佳,两个模型对于2030年碳排放强度值的预测相差0.0603吨/万元,对于碳排放强度较2005年降幅预测相差2.03个百分点,验证了本文预测模型的稳健性。Based on LSTM neural network model,the change trend of China’s carbon emission intensity is indirectly predicted by setting a certain economic growth expectation.At the same time,ARIMA-BP neural network model is established as a verification model to directly predict the carbon emission intensity.The research conclusions are as follows:(1)the mean square error(MSE)of LSTM neural network model on the validation set is 0.00001 and the average absolute percentage error(MAPE)is 0.33%,indicating that the generalization ability of the model is very excellent.Under the prediction framework of LSTM neural network model,China’s carbon emission intensity will reach0.9237 tons per 10000 yuan in 2030,Compared with the carbon emission intensity of 2.9755 tons in 2005,the carbon emission intensity will be reduced by 68.96%;(2)In the prediction and analysis of ARIMA-BP model,it is estimated that China’s carbon emission intensity can be reduced to 0.9840 tons per 10000 yuan in 2030,which is 66.93%lower than that of 2.9755 tons per 10000 yuan in 2005;(3)Comparing the predicted value of carbon emission intensity obtained by ARIMA-BP model with LSTM neural network model,LSTM neural network model performs better in prediction accuracy,and the difference between the two models for the prediction of carbon emission intensity in 2030 is0.0603 tons per 10000 yuan,and the difference between the prediction of carbon emission intensity and that in 2005 is2.03 percentage points,with small error,which proves that the prediction model in this paper is robust.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28