检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李锐光 段鹏宇[1] 沈蒙 祝烈煌[1] LI Ruiguang;DUAN Pengyu;SHEN Meng;ZHU Liehuang(School of Cyberspace Science and Technology,Beijing Institute of Technology,Beijing 100081,China;National Computer Network Emergency Response Technical Team/Coordination Center of China,Beijing 100029,China)
机构地区:[1]北京理工大学网络空间安全学院,北京100081 [2]国家计算机网络应急技术处理协调中心,北京100029
出 处:《北京航空航天大学学报》2022年第2期233-239,共7页Journal of Beijing University of Aeronautics and Astronautics
摘 要:物联网(IoT)设备流量分类对网络资产管理有重要意义,基于流量统计的分类技术是当前研究热点。已有算法主要基于流信息建立特征向量,而对数据包信息利用较少。改进了基于随机森林的物联网设备流量分类算法,基于流信息和流数据包信息共同建立特征向量。实验结果表明:所提算法与其他算法相比,所提算法的平均分类准确率由56%提高到82%,平均召回率由47%提高到67%,平均F_(1)得分由0.43提高到0.74,混淆矩阵对比也有明显提升,因此具备更好的分类效果。The traffic classification of Internet of things(IoT)devices is very important to the management of cyberspace assets.The classification technology based on statistical identification is a hot spot in current academic research.The previous algorithms were mainly based on the flow information to set up the feature vectors,but lesson the packet information.In this paper,we improve the traffic classification algorithm of IoT devices based on random forest.We set up the feature vectors with both the flow information and the flow's packet information.The experimental results show that,compared with previous algorithms,the classification accuracy of the proposed algorithm increases from 56%to 82%,the recall rate improves from 47%to 67%,the F_(1) score increases from 0.43 to 0.74,and the confusion matrix correlation is also significantly improved.As a result,the proposed algorithm has a better classification effect than previous ones.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.244