非线性化改进的KP-Detector模型在人体姿态识别中的应用  

Application of Nonlinear Improved KP-Detector Model in Human Pose Recognition

在线阅读下载全文

作  者:张鹏[1] 逄博 徐欣[1] 韦博 ZHANG Peng;PANG bo;XU Xin;WEI Bo(School of Communication Engineering,Hangzhou Dianzi University Information Engineering School,Hangzhou 310018,China)

机构地区:[1]杭州电子科技大学通信工程学院,浙江杭州310018

出  处:《软件导刊》2022年第3期49-54,共6页Software Guide

基  金:国防科工局稳定支持项目(WDZC20205500206)。

摘  要:针对现有体态识别模型检测精度不高、检测周期过长以及模型参数规模过大等问题,提出一种新的改进模型——KP-Detector。该模型将关节点和肢体分开检测和识别,使用改进的PLF匹配方法及Dense连接机制,减少模型复杂度;运用匈牙利算法进行肢体高效匹配,优化使用6层模型结构,同时应用于单人和多人关节点检测。在MPII数据集上测试显示,该模型检测精度优于对比模型,测试速度较其他模型快近4FPS,而模型大小只有18M,具有较大优势。For existing body recognition models in terms of insufficient detection accuracy,long detection period and too large model parameters,propose a new improved posture recognition model—KP-Detector.The joint points and limbs are detected and identified separately.a new and improved PLF(Point Line Fields)and Dense connection mechanism is used in the model to reduce the complexity of the model and alleviate the disappearance of the gradient of the model.The Hungarian algorithm is used for efficient matching of the limbs,and the 6-layer model structure is optimized.Point positioning phase and two-layer limb detection phase,the model can be applied to single and multi-person joint point detection problems at the same time.On the MII data set,the test accuracy of this model is better than that of the comparison model,the test speed is nearly 4 FPS faster than other models,and the model size is only18 M,which shows that this model has more advantages than other models.

关 键 词:KP-Detector 体态识别 PLF 深度学习 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象