检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Maria Laura Gödecke Karsten Frenner Wolfgang Osten
机构地区:[1]Institut für Technische Optik,Universität Stuttgart,Pfaffenwaldring 9,70569 Stuttgart,Germany
出 处:《Light(Advanced Manufacturing)》2021年第3期31-44,共14页光(先进制造)(英文)
基 金:supported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under grant number Os 111/50-1.
摘 要:Optical scatterometry is one of the most important metrology techniques for process monitoring in high-volume semiconductor manufacturing.By comparing measured signatures to modelled ones,scatterometry indirectly retrieves the dimensions of nanostructures and,hence,solves an inverse problem.However,the increasing design complexity of modern semiconductor devices makes modelling of the structures ever more difficult and requires a multitude of parameters.Such large parameter spaces typically cause ambiguities in the reconstruction process,thereby complicating the solution of the inherently ill-posed inverse problem further.An effective means of regularisation consists of systematically maximising the information content provided by the optical sensor.With this in mind,we combined the classical techniques of white-light interferometry,Mueller polarimetry,and Fourier scatterometry into one apparatus,allowing for the acquisition of fully angle-and wavelength-resolved Mueller matrices.The large amount of uncorrelated measurement data improve the robustness of the reconstruction in the case of complex multi-parameter problems by increasing the overall sensitivity and reducing cross-correlations.In this study,we discuss the sensor concept and introduce the measurement strategy,calibration routine,and numerical post-processing steps.We verify the practical feasibility of our method by reconstructing the profile parameters of a sub-wavelength silicon line grating.All necessary simulations are based on the rigorous coupledwave analysis method.Additional measurements performed using a scanning electron microscope and an atomic force microscope confirm the accuracy of the reconstruction results,and hence,the real-world applicability of the proposed sensor concept.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.29