多交互图卷积网络用于方面情感分析  被引量:19

Multi-interaction Graph Convolutional Networks for Aspect-level Sentiment Analysis

在线阅读下载全文

作  者:王汝言[1,2,3] 陶中原 赵容剑 张普宁 杨志刚 WANG Ruyan;TAO Zhongyuan;ZHAO Rongjian;ZHANG Puning;YANG Zhigang(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China,Chongqing 400065,China;Chongqing Key Laboratory of Ubiquitous Sensing and Networking,Chongqing 400065,China)

机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065 [2]先进网络与智能互联技术重庆市高校重点实验室,重庆400065 [3]泛在感知与互联重庆市重点实验室,重庆400065

出  处:《电子与信息学报》2022年第3期1111-1118,共8页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61901071,61871062,61771082);重庆市高校创新团队建设计划(CXQT20017);重庆市自然科学基金(cstc2019jcyj-zdxmX0024)。

摘  要:方面情感分析旨在识别句子中特定方面的情感极性,是一项细粒度情感分析任务。传统基于注意力机制方法,仅在单词之间进行单一的语义交互,没有建立方面词与文本词的语法信息交互,导致方面词错误地关注到与其语法无关的文本词信息。此外,单词的位置距离特征和语法距离特征,分别体现其在句子线性形式中和句子语法依存树中的位置关系,而基于图卷积网络处理语法信息的方法却忽略距离特征,使距方面词较远的无关信息对其情感分析造成干扰。针对上述问题,该文提出多交互图卷积网络(MIGCN),首先将文本词位置距离特征馈入到每层图卷积网络,同时利用依存树中文本词的语法距离特征对图卷积网络的邻接矩阵加权,最后,设计语义交互和语法交互分别处理单词之间语义和语法信息。实验结果表明,在公共数据集上,准确率和宏F1值均优于基准模型。Aspect level sentiment analysis aims to identify the sentiment polarity of a specific aspect in a given context,and is a fine-grained sentiment analysis task.The traditional attention-based approach,which only performs the semantic interaction between words,does not establish the syntactic relation interaction between aspect words and text words,resulting in the aspect words incorrectly focusing on information about words that are irrelevant to their syntax.In addition,the positional distance feature and the syntactic distance feature of words,which reflect their relationships in the linear form of the sentence and in the syntactic dependency tree of the sentence,respectively,are ignored by the method of processing syntactic information using graph convolutional networks,allowing irrelevant information far from the aspect words to interfere with their sentiment analysis.To address this problem,a Multi-Interaction Graph Convolutional Network(MIGCN)is proposed.First,the context words positional distance features are fed into each layer of the graph convolutional network,while the adjacency matrix of the graph convolutional network is weighted by using the syntactic distance of context words in the dependency tree.Finally,semantic interaction and syntactic interaction are designed to process the semantic and syntactic information between words,respectively.The experimental results show the proposed model can outperform state-of-the-art baselines on the available datasets.

关 键 词:方面情感分析 图卷积网络 依存树 注意力机制 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象