Covariance estimation via fiducial inference  

在线阅读下载全文

作  者:W.Jenny Shi Jan Hannig Randy C.S.Lai Thomas C.M.Lee 

机构地区:[1]Financial Planning&Analysis,MassMutual,Boston,MA,USA [2]Department of Statistics&Operations Research,University of North Carolina,Chapel Hill,NC,USA [3]Department of Statistics,University of California,Davis,CA,USA

出  处:《Statistical Theory and Related Fields》2021年第4期316-331,共16页统计理论及其应用(英文)

基  金:Shi’s research was supported in part by the National Library of Medicine Institutional Training Grant T15 LM009451;Hannig’s research was supported in part by the National Sci-ence Foundation(NSF)under Grant Nos.1512945,1633074,and 1916115;Lee’s research was supported in part by the NSF under Grant No.1512945 and 1513484.

摘  要:As a classical problem,covariance estimation has drawn much attention from the statistical com-munity for decades.Much work has been done under the frequentist and Bayesian frameworks.Aiming to quantify the uncertainty of the estimators without having to choose a prior,we have developed a fiducial approach to the estimation of covariance matrix.Built upon the Fiducial Berstein-von Mises Theorem,we show that the fiducial distribution of the covariate matrix is consistent under our framework.Consequently,the samples generated from this fiducial distri-bution are good estimators to the true covariance matrix,which enable us to define a meaningful confidence region for the covariance matrix.Lastly,we also show that the fiducial approach can be a powerful tool for identifying clique structures in covariance matrices.

关 键 词:covariance estimation SPARSITY fiducial inference CLIQUES 

分 类 号:O57[理学—粒子物理与原子核物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象