Sensing Matrix Optimization for Multi-Target Localization Using Compressed Sensing in Wireless Sensor Network  被引量:3

在线阅读下载全文

作  者:Xinhua Jiang Ning Li Yan Guo Jie Liu Cong Wang 

机构地区:[1]College of Communications Engineering,Army Engineering University,Nanjing 210007,China [2]College of Field Engineering,Army Engineering University,Nanjing 210007,China

出  处:《China Communications》2022年第3期230-244,共15页中国通信(英文版)

摘  要:In the multi-target localization based on Compressed Sensing(CS),the sensing matrix's characteristic is significant to the localization accuracy.To improve the CS-based localization approach's performance,we propose a sensing matrix optimization method in this paper,which considers the optimization under the guidance of the t%-averaged mutual coherence.First,we study sensing matrix optimization and model it as a constrained combinatorial optimization problem.Second,the t%-averaged mutual coherence is adopted as the optimality index to evaluate the quality of different sensing matrixes,where the threshold t is derived through the K-means clustering.With the settled optimality index,a hybrid metaheuristic algorithm named Genetic Algorithm-Tabu Local Search(GA-TLS)is proposed to address the combinatorial optimization problem to obtain the final optimized sensing matrix.Extensive simulation results reveal that the CS localization approaches using different recovery algorithms benefit from the proposed sensing matrix optimization method,with much less localization error compared to the traditional sensing matrix optimization methods.

关 键 词:compressed sensing hybrid metaheuristic K-means clustering multi-target localization t%-averaged mutual coherence sensing matrix optimization 

分 类 号:TN929.5[电子电信—通信与信息系统] TP212.9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象