检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邬舒雯 熊明 Shuwen Wu;Ming Hsiung(School of Philosophy and Social Development, South China Normal University)
机构地区:[1]华南师范大学哲学与社会发展学院
出 处:《逻辑学研究》2022年第1期46-63,共18页Studies in Logic
基 金:国家社会科学基金一般项目“语义悖论的可容许模型研究”(19BZX136)资助。
摘 要:熊明(2020)把初等元胞自动机与自指语句结合起来进行研究,建立起二者在演化过程方面的紧密关联。沿此路径,本文主要考虑一类称为总和型的二维冯诺依曼型元胞自动机,给出其自指语句表达形式。并且通过利用自指语句的性质,寻找元胞自动机相对应的不动点,将其与自指悖论相联系。同时,通过分析其演化过程的(不)稳定性特征,进行了相应的分类。The elementary cellular automata are associated with self-referential sentences(Ming Hsiung,2020),so that a close relationship between them has been established with re-spect to their evolution processes.Along this line,we mainly consider a class of two-dimensional von Neumann-type cellular automata called the totalistic rules,and corre-spond each element of this class to a set of self-referential sentences.And by referring to the properties of self-referential sentences,we determine the fixed points(if any)of the cellular automata that we study,and find some of them have a counterpart to the self-referential paradoxes.At the same time,by analying the(in)stability characteristics of its evolution process,we give a classification of the two-diminsional totalistic von Neumann-type cellular automata.
关 键 词:冯诺依曼型元胞自动机 不动点 修正理论 演化序列
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.180.237