检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王勇超 曹钰 杨玉辉 许端清[2] WANG Yong-chao;CAO Yu;YANG Yu-hui;XU Duan-qing(Information Technology Center,Zhejiang University,Hangzhou 310027,China;College of Computer Science and Technology,Zhejiang University,Hangzhou 310027,China)
机构地区:[1]浙江大学信息技术中心,浙江杭州310027 [2]浙江大学计算机科学与技术学院,浙江杭州310027
出 处:《浙江大学学报(工学版)》2022年第3期520-530,共11页Journal of Zhejiang University:Engineering Science
基 金:国家重点研发计划资助项目(2020YFC1523101,2019YFC1521304);浙江省重点研发计划资助项目(2021C03140);宁波市2021科技创新重大专项(20211ZDYF020028).
摘 要:针对端到端的对话生成模型普遍存在无意义安全回复和大量重复词汇的问题,和将外部知识引入对话系统的挑战,提出基于知识迁移和双向异步序列的对话生成模型.将知识库中的外部知识融合到对话生成模型并显式地生成在回复语句中;使用预训练的知识库问答模型获取输入语句的知识表达、候选知识表达以及关键字;搭建2个编码器-解码器结构,通过双向异步解码将关键字显式地生成在对话回复中;编、解码阶段均引入预训练模型的知识理解和知识表达能力,提升对话生成对知识信息的捕捉能力.提出重复检测惩罚机制,通过赋予惩罚权重的方式减少对话生成中的重复词汇.实验结果表明,所提模型在自动评估和人工评价指标上均优于已有的对话生成方法.A dialogue generation model based on knowledge transfer and two-direction asynchronous sequence generation was proposed,aiming to the generally meaningless safe replies and the problem of a large number of repetitive words in view of the end-to-end dialogue generation models,and the challenge of introducing external knowledge into the dialogue system.The external knowledge in the knowledge base was fused into the dialogue generation model and explicitly generated in the reply sentences.A pre-trained model based on the question and answering of the knowledge base was used to obtain the knowledge expressions of the input sentences,the knowledge expressions of the candidate answers,and keywords.The keywords were then used in the reply.Two encoder-decoder structure models were proposed,and the keywords were generated explicitly in the dialogue reply by two-direction asynchronous generation.The knowledge expressions and understanding capabilities of the pre-trained model were introduced to capture knowledge information to dialog generation at the encoding and decoding stages.A repetitive detection-penalty mechanism was proposed to reduce the repeated words problem by giving weight to punish the repetitive words.Experimental results show that the model outperforms better than existing methods in both automatic evaluation and manual evaluation indicators.
关 键 词:对话生成 知识实体 知识库问答 双向异步生成 序列到序列模型
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117