基于人工神经网络的NoC智能动态链路管理方法  

NoC Intelligent Dynamic Link Management Strategy Based on Artificial Neural Network

在线阅读下载全文

作  者:许威 张霞 XU Wei;ZHANG Xia(Beijing Urban Construction Design and Development Group Co.,Ltd.,Beijing 100037,China;Beijing Institute of Technology School of Information and Electronics,Beijing 100081,China)

机构地区:[1]北京城建设计发展集团股份有限公司,北京100037 [2]北京理工大学信息与电子学院,北京100081

出  处:《计算机测量与控制》2022年第3期168-172,共5页Computer Measurement &Control

基  金:北京理工大学横向科研项目(2020I032)。

摘  要:功耗是片上网络(NoC)主要限制因素,链路状态的选择性开/关切换算法可降低电路级和系统级的链路功耗,这些算法大多集中于一个简单的静态阈值触发机制,该机制决定了是否应该打开或关闭链路;为解决上述触发机制存在诸多限制,提出了一种针对NoC的人工神经网络(ANN,artificial neutral network)作为动态链路功耗管理方法,该方法基于对系统状态的有监督在线学习,通过使用小型可扩展的神经网络来关闭和打开链路,从而提高预测能力;基于人工神经网络的模型利用了非常低的硬件资源,并且可以集成在大型网状和环面NoC中;通过对不同网络拓扑上各种综合流量模型的仿真结果表明,与静态阈值计算相比,该方法在较低的硬件支出下可以节省功耗;可为解决链路管理NoC中的功耗问题提供思路。Power consumption is the main limiting factor of network on chip(NOC).The selective on/off switching algorithm of link state can reduce the link power consumption at circuit level and system level.Most of these algorithms focus on a simple static threshold trigger mechanism,which determines whether the link should be turned on or off.In order to solve many limitations for the above trigger mechanism,an artificial neural network(ANN) for NOC is proposed as a method for the dynamic link power consumption management.This method is based on supervised online learning of system state,and uses a small scalable neural network to close and open the link,so as to improve the prediction ability.Based on artificial neural network,the model makes use of the very low hardware resources and can be integrated in the large mesh and the torus NOC.Compared with static threshold calculation,The simulation results of various comprehensive traffic models on different network topologies show that this method can save the power consumption with the low hardware overhead.It can provide the ideas for solving the power consumption problem in link management NOC.

关 键 词:片上网络 静态阈值 ANN机制 链路管理 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象