检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金政 金宏平[1] Jin Zheng;Jin Hongping(Hubei University of Automotive Technology,Shiyan 442002,China)
出 处:《湖北汽车工业学院学报》2022年第1期58-62,共5页Journal of Hubei University Of Automotive Technology
基 金:国家自然科学基金(51475150)。
摘 要:针对WKNN算法中未知节点的定位中邻近参考点参数固定、定位不灵活且误差较大的问题,提出了基于RSSI的加权近邻改进算法。首先对RSSI值进行高斯滤波处理,通过FCM聚类确定未知节点所属类别,采用隶属度阈值对聚类结果进行修正。然后根据FCM的聚类子样本数设定WKNN算法的近邻值,实现了WKNN算法的自适应计算。实验结果表明,该方法的定位精度明显好于KNN和WKNN的定位算法,其平均误差不超过0.36 m。To solve problems including fixed K adjacent reference points,inflexibility and large errors while locating unknown nodes in the weighted k-nearest neighbor(WKNN)algorithm,a method based on weighted nearest neighbor improvement algorithm of received signal strength indication(RSSI)was proposed.First,the RSSI value was proceeded by Gaussian filtering.The category of unknown nodes was identified by FCM clustering.The clustering results were corrected by membership threshold.Then,the nearest neighbor value of WKNN algorithm was set according to the number of clustering subsamples of FCM,which realized the adaptive calculation of WKNN.Experimental results show that the positioning accuracy of this method is significantly better than KNN and WKNN positioning algorithm,and the average error does not exceed 0.36 m.
分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33