检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋博 刘磊[1] 郑胜[1] 杨珊珊[1] 曾曙光[1] 黄瑶[1] 罗骁域 JIANG Bo;LIU Lei;ZHENG Sheng;YANG Shan-shan;ZENG Shu-guang;HUANG Yao;LUO Xiao-yu(Center of Astronomy and Space Science,China Three Gorges University,Yichang 443002)
机构地区:[1]三峡大学天文与空间科学研究中心,宜昌443002
出 处:《天文学报》2022年第2期63-71,共9页Acta Astronomica Sinica
基 金:国家自然科学基金项目(U2031202);湖北省教育厅科学技术研究计划优秀中青年人才项目(Q20201210)资助。
摘 要:太阳活动区是太阳大气中产生各种活动现象的区域,精确地检测和识别太阳活动区对理解太阳磁场的形成机制具有极为重要的科学意义.根据太阳活动区结构较为复杂的特点,基于尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)和密度峰值聚类(Clustering by Fast Search and Find of Density Peaks,DPC)算法的优越性,提出了一种太阳活动区的自动检测和识别方法.首先,对太阳动力学天文台(Solar Dynamics Observatory,SDO)日震和磁场成像仪(Helioseismic and Magnetic Imager,HMI)的纵向磁图进行对比度增强;然后采用SIFT方法提取出全日面磁图中的特征点;最后利用DPC算法将特征点进行聚类,从而自动检测和识别出太阳活动区.研究结果表明,SIFT和DPC算法相结合的方法可以在不需要人工交互的情况下准确地自动检测出太阳活动区.The solar active regions are the sites of various activities taking place in the solar atmosphere.Accurate detection and identification of the solar active regions are of great scientific significance to understand the formation mechanism of the solar magnetic field.In this paper,we propose an automatic detection and recognition method for solar active regions based on the advantages of Scale-Invariant Feature Transform(SIFT)and Clustering by Fast Search and Find of Density Peaks(DPC).Firstly,contrast enhancement is used in the longitudinal magnetic image of Helioseismic and Magnetic Imager(HMI)of Solar Dynamics Observatory(SDO).Then,the feature points are extracted by SIFT.Finally,the feature points are clustered by fast search and find of density peaks so as to automatically detect and identify the solar active regions.The results show that the combination of SIFT and DPC can accurately identify the solar active regions without human-computer interaction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38