检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yan Xia REN Ren Ming SONG Zhen Yao SUN Jian Jie ZHAO
机构地区:[1]LMAM School of Mathematical Sciences&Center for Statistical Science,Peking University,Beijing,100871,P.R.China [2]Department of Mathematics,University of Illinois at Urbana-Champaign,Urbana,IL,61801,USA [3]School of Mathematics and Statistics,Wuhan University,Wuhan,430072,P.R.China [4]The Faculty of Industrial Engineering and Management,Technion,Haifa,3200003,Israel [5]School of Mathematical Sciences,Peking University,Beijing,100871,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2022年第3期487-498,共12页数学学报(英文版)
基 金:supported in part by NSFC(Grant Nos.11731009 and 12071011);the National Key R&D Program of China(Grant No.2020YFA0712900);supported in part by Simons Foundation(#429343,Renming Song)。
摘 要:This paper is a continuation of our recent paper(Electron.J.Probab.,24(141),(2019))and is devoted to the asymptotic behavior of a class of supercritical super Ornstein-Uhlenbeck processes(X_(t))t≥0 with branching mechanisms of infinite second moments.In the aforementioned paper,we proved stable central limit theorems for X_(t)(f)for some functions f of polynomial growth in three different regimes.However,we were not able to prove central limit theorems for X_(t)(f)for all functions f of polynomial growth.In this note,we show that the limiting stable random variables in the three different regimes are independent,and as a consequence,we get stable central limit theorems for X_(t)(f)for all functions f of polynomial growth.
关 键 词:SUPERPROCESSES Ornstein–Uhlenbeck processes stable distribution central limit theorem law of large numbers branching rate regime
分 类 号:O211.4[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.84.174