机构地区:[1]中国科学院近代物理研究所,兰州730000 [2]中国科学院大学物理科学学院,北京100049 [3]先进能源科学与技术广东省实验室,广东惠州516000
出 处:《材料导报》2022年第7期195-200,共6页Materials Reports
基 金:国家自然科学基金面上项目(12075292);国家自然科学基金联合基金项目(U1832206);广东省自然科学基金面上项目(HNY20301GJT)。
摘 要:铅铋共晶(LBE)因其良好的物理性能和低化学活性,成为加速器驱动次临界系统(ADS)和铅基堆(LFR)冷却剂的优选材料,但高温下结构材料与 LBE 接触会引起结构材料性能的退化,而 FeCrAl 合金具有优良的抗高温性能、耐腐蚀性能和力学性能等,在作为 ADS 和 LFR 的重要候选结构材料上有很大的潜能。近年来,针对高温液态 LBE/ Pb 环境下 FeCrAl 系列合金的腐蚀行为及其机理,科研人员开展了大量的研究并取得了一系列成果。 然而,因腐蚀现象影响因素众多,未能形成系统的 FeCrAl 合金腐蚀的评价机制,而且针对其不同条件下的腐蚀机理的研究也很欠缺。 FeCrAl 合金耐腐蚀性能的提高也是被关注的焦点。氧浓度、温度、元素含量是影响 FeCrAl 合金腐蚀过程的关键因素,因此,近年来研究人员在宽温域(400 ~900 ℃)、氧浓度10^(-3)% ~10^(-8)%(质量分数)范围内开展了具有针对性的实验研究和理论模拟,并绘制了耐 LBE 腐蚀的 FeCrAl 合金三元相图。 研究结果表明,在合适的氧浓度、温度下,FeCrAl 合金表面形成的致密、连续的氧化层成为材料耐 LBE 腐蚀的关键,也得出了在不同温度及元素含量情况下氧化层形成的条件边界图。 此外,以 FeCrAl(Y)为基础添加活性元素调制的第二代 FeCrAl 合金和在成熟材料(如 316L、T91 等)上制备 FeCrAl 系列合金涂层,也是提高结构材料耐腐蚀性能的主要途径。本文首先简要介绍了 FeCrAl 合金材料的组分、结构、常规性能及其研发现状,然后对该材料在高温液态 LBE/ Pb 中腐蚀实验研究进展进行了归纳综述,总结了氧浓度、温度、合金元素、涂层工艺对材料腐蚀过程的影响,以及腐蚀对材料力学性能的影响,探讨了该材料的 LBE/ Pb 腐蚀机理、存在问题以及可能提高耐腐蚀性能的措施。Lead-bismuth eutectic (LBE) has become the preferred coolant material for accelerator driven subcritical system (ADS) and lead-cooled fastreactor (LFR) due to its good physical properties and low chemical activity. However, LBE at high temperature can cause degradation of structural materials properties. FeCrAl alloys, with excellent high temperature resistance, corrosion resistance and mechanical properties, can just play a promising role in structural materials.Although a lot of research had been done about corrosion behaviors and mechanism of FeCrAl alloy in LBE, it failed to form a systematic evaluation method of FeCrAl alloy corrosion due to complex influencing factors. Furthermore, the detailed description of the corrosion mechanism of FeCrAl alloys under different conditions is lacking and the improvement of its corrosion resistance has attracted more attention as well.Since oxygen concentration in LBE/ Pb, environment temperature and element content are the key factors that affect the corrosion process of FeCrAl alloys, researchers recently have done numerous experimental studies and theoretical simulations in a wide temperature range (400—900 ℃) and oxygen concentration of 10^(-3)%—10^(-8)%(mass fraction). Based on a large amount of data, the ternary phase diagram has been drawn, where the composition range of the FeCrAl alloy resistant to LBE corrosion is identified. The results revealed that the formation of a dense and continuous oxide layer on the surface of the FeCrAl alloys was the key to the materials corrosion resistance at the proper oxygen concentration and temperature. The conditional boundary diagram of the oxide layer formation has also been drawn at different temperatures and element contents. Furthermore, two main ways have been proposed to improve the corrosion resistance of structural materials. One is theⅡ phase FeCrAl alloys modulated by adding trace elements based on FeCrAl(Y). The other is FeCrAl alloys coatings prepared on mature materials (such as316L, T91, etc. ).This pape
关 键 词:FeCrAl合金 LBE/Pb腐蚀 氧化铝层 腐蚀机理
分 类 号:TL341[核科学技术—核技术及应用]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...