检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:YANG Zhaoxin YANG Ruizhe LI Meng YU Richard Fei ZHANG Yanhua 杨兆鑫;YANG Ruizhe;LI Meng;YU Richard Fei;ZHANG Yanhua(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,P.R.China;School of Information Technology,Carleton University,Ottawa K1S 5B6,Canada)
机构地区:[1]Faculty of Information Technology,Beijing University of Technology,Beijing 100124,P.R.China [2]School of Information Technology,Carleton University,Ottawa K1S 5B6,Canada
出 处:《High Technology Letters》2022年第1期10-20,共11页高技术通讯(英文版)
基 金:Supported by the National Natural Science Foundation of China(No.61901011);the Foundation of Beijing Municipal Commission of Edu-cation(No.KM202010005017,KM202110005021).
摘 要:Recently,sharded-blockchain has attracted more and more attention.Its inherited immutabili-ty,decentralization,and promoted scalability effectively address the trust issue of the data sharing in the Internet of Things(IoT).Nevertheless,the traditional random allocation between validator groups and transaction pools ignores the differences of shards,which reduces the overall system per-formance due to the unbalance between computing capacity and transaction load.To solve this prob-lem,a load balance optimization framework for sharded-blockchain enabled IoT is proposed,where the allocation between the validator groups and transaction pools is implemented reasonably by deep reinforcement learning(DRL).Specifically,based on the theoretical analysis of the intra-shard consensus and the final system consensus,the optimization of system performance is formed as a Markov decision process(MDP),and the allocation of the transaction pools,the block size,and the block interval are jointly trained in the DRL agent.The simulation results show that the proposed scheme improves the scalability of the sharded blockchain system for IoT.
关 键 词:Internet of Things(IoT) blockchain sharding load balance deep reinforcement learning(DRL)
分 类 号:TP391.44[自动化与计算机技术—计算机应用技术] TN929.5[自动化与计算机技术—计算机科学与技术] TP311.13[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7