机构地区:[1]Key Laboratory of Marine Materials and Related Technologies,Zhejiang Key Laboratory of Marine Materials and Protective Technologies,Ningbo Institute of Materials Technology and Engineering(NIMTE),Chinese Academy of Sciences,Ningbo,Zhejiang 315201,China [2]Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Bejjing 100049,China [3]Centre for Quantum Physics,Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement(MOE),Beijing Key Lab of Nonophotonics&Ultrafine Optoelectronic Systems,School of Physics,Beijing Institute of Technology,Beijing 100081,China [4]College of Materials Science and Engineering,Hunan University,Changsha,Hunan 410082,China [5]Advanced Nano-processing Engineering Lob,Mechanical Systems Engineering,Kogakuin University,Tokyo 192-0015,Japan
出 处:《Chinese Journal of Chemistry》2022年第3期329-336,共8页中国化学(英文版)
基 金:the National Natural Science Foundation of China(U1709205,52102055);the National Key R&D Program of China(2017YFE0128600);China Postdoctoral Science Foundation(2020M681965);the Project of the Chinese Academy of Sciences(XDC07030100,XDA22020602,KFZD-SW-409,ZDKYYQ20200001,and ZDRW-CN-2019-3);CAS Youth Innovation Promotion Association(2020301);Science and Technology Major Project of Ningbo(2018B10046);the Natural Science Foundation of Ningbo(2017A610010);Foundation of State Key Laboratory of Solid lubrication(LSL-1912);National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(6142905192806);K.C.Wong Education Foundation(GJTD-2019-13).
摘 要:As the power density of electronic devices increases,there has been an urgent demand to develop highly conductive polymer composites to address the accompanying thermal management issues.Due to the ultra-high intrinsic thermal conductivity,graphene is considered a very promising filler to improve the thermal conductivity of polymers.However,graphene-based polymer composites prepared by the conventional mixing method generally have limited thermal conductivity,even under high graphene loading,due to the failure to construct efficient heat transfer pathways in the polymer matrix.Here,a spiral graphene framework(SGF)containing continuous and highly ordered graphene microtubes was developed based on a modified CVD method.After embedding into the epoxy(EP)matrix,the graphene microtubes can act as efficient heat pathways,endowing the SGF/EP composites with a high through-plane thermal conductivity of 1.35 W·m^(-1)·K^(-1) at an ultralow graphene loading of 0.86 wt%.This result gives a thermal conductivity enhancement per 1 wt%filler loading of 710%,significantly outperforming various graphene structures as fillers.In addition,we demonstrated the practical application of the SGF/EP composite as a thermal interface material for efficient thermal man-agement of the light-emitting diode(LED).
关 键 词:GRAPHENE Chemical vapor deposition Polymer Thermal conductivity Thermal management material
分 类 号:TB3[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...