检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuqing Liu Xianyi Li
出 处:《International Journal of Biomathematics》2021年第8期253-272,共20页生物数学学报(英文版)
基 金:This work is partly supported by the National Natural Science Foundation of China(61473340);the Distinguished Professor Foundation of Qianjiang Scholar in Zhejiang Province;the National Natural Science Foundation of Zhejiang University of Science and Technology(F701108G14).
摘 要:In this paper,we use a semidiscretization method to derive a discrete predator–prey model with Holling type II,whose continuous version is stated in[F.Wu and Y.J.Jiao,Stability and Hopf bifurcation of a predator-prey model,Bound.Value Probl.129(2019)1–11].First,the existence and local stability of fixed points of the system are investigated by employing a key lemma.Then we obtain the sufficient conditions for the occurrence of the transcritical bifurcation and Neimark–Sacker bifurcation and the stability of the closed orbits bifurcated by using the Center Manifold theorem and bifurcation theory.Finally,we present numerical simulations to verify corresponding theoretical results and reveal some new dynamics.
关 键 词:Discrete predator-prey system semidiscretization method transcritical bifurcation Neimark-Sacker bifurcation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229