检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shasha Zheng Yue Ru Huaiguo Xue Huan Pang
机构地区:[1]School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225009,China
出 处:《Chinese Chemical Letters》2021年第12期3817-3820,共4页中国化学快报(英文版)
基 金:supported by the National Natural Science Foundation of China (No. U1904215);the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (TAPP);Natural Science Foundation of Jiangsu Province (No. BK20200044);Excellent doctoral dissertation of Yangzhou University and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX19_2099)。
摘 要:Developing metal-organic framework(MOF)-based materials with good cyclic stability is the key to their practical application. Fluorinated organic compounds are usually highly chemically stability due to the high electronegativity of fluorine. Also, the pillared-layer structures based on coordination bonds have better structure and thermal stability than those based on hydrogen bonds. Herein, the fluorinated pillared-layer [Ni(2,3,4,5-tetrafluorobenzoic acid)(4,4-bipyridine)]nMOF([Ni(TFBA)(Bpy)]n) materials were constructed through a facile room-temperature solution reaction and used as electrode materials for supercapacitors. Surprisingly, the size/morphology of Ni(TFBA)(Bpy)nMOFs could be adjusted by varying the synthesis time. Benefting from the short ion diffusion length, unique pillar-layer structure, and strong intercomponent synergy of organic ligands, the Ni(TFBA)(Bpy)nMOF microrods showed a higher electrochemical energy storage capability than bulk MOFs. At the same time, compared to the non-fluorinated [Ni(benzoic acid)(Bpy)]nMOFs(31.5% capacitance decay), the fluorinated Ni(TFBA)(Bpy)n MOFs have a higher cycle stability with only 2.6% capacitance loss after 5000 cycles at 3 m A/cm^(2).
关 键 词:Fluorinated metal-organic framework Pillar-layer structure Microrod Cyclic stability Electrochemical energy storage SUPERCAPACITOR
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117