检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:YANG Mengke LI Xiuzhen WANG Lin YUAN Junfei WANG Zhanwei LIANG Kunfeng
出 处:《Journal of Thermal Science》2022年第2期448-462,共15页热科学学报(英文版)
基 金:financially supported by the National Natural Science Foundatio of China(Grant No.51876055,51806060,and 51706061);the Natural Science Foundation of Henan Province(182300410233)。
摘 要:The organic Rankine cycle is introduced into the conventional ejector refrigeration(CER)system to establish the low-grade heat-driven cooling/power cogeneration ejector refrigeration(CPC-ER)system using the isobutane as the refrigerant.In comparison with the CER system where external power is consumed by the circulating pump,the power output from the CPC-ER system is more than the power consumption of its circulating pump so that a portion of net power is derived from the CPC-ER system.Based on the mathematical model of thermodynamics,energy and exergy analysis of the CPC-ER system is carried out and compared with the CER system.The results reveal that the equivalent coefficient of performance(COP)of the CPC-ER system is 41.14%to 71.30%higher than that of the CER system,and the exergy efficiency of the CPC-ER system is 1.32 to 1.49 times higher than that of the CER system.Both the power produced by the turbine and the total exergy output from the CPC-ER system approach the maximum,as the generating temperature in the generator is up to 80°C.The CPC-ER system has the higher energy utilization efficiency than the CER system,and it is suitable for the cooling and power-required places with low-grade thermal sources.
关 键 词:ejector refrigeration EXERGY power consumption equivalent COP
分 类 号:TB657[一般工业技术—制冷工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198