基于表观增氧量的平潭海域赤潮预警应用研究  

Application of Red Tide Early Warning in Pingtan Sea Area Based on Apparent Oxygen Increase

在线阅读下载全文

作  者:邹嘉澍 许阳春 苏玉萍[1,2] Balaji PRASATH·BARATHAN 陈斌 苏金洙 ZOU Jiashu;XU Yangchun;SU Yuping;Balaji PRASATH·BARATHAN;CHEN Bin;SU Jinzhu(Environmental Science and Engineering College,Fujian Normal University,Fuzhou 350007,China;Fujian Key Laboratory of Pollution Control and Resource,Fuzhou 350007,China;Fuzhou Fuguang Water Science&Technology Co.,Ltd,Fuzhou 350007,China)

机构地区:[1]福建师范大学环境科学与工程学院,福建福州350007 [2]福建省污染控制与资源循环重点实验室,福建福州350007 [3]福州福光水务技术有限公司,福建福州350007

出  处:《福建师范大学学报(自然科学版)》2022年第2期50-57,共8页Journal of Fujian Normal University:Natural Science Edition

基  金:国家重点研发计划项目(2016YFE0202100);国家自然科学基金资助项目(41573075)。

摘  要:以福建平潭海域为研究对象,探究表观增氧量(AOI)与赤潮藻密度之间的相关性,从而利用AOI指标进行赤潮预警.建立AOI的赤潮预警模型,通过福建省海洋和渔业监测部门收集的2013-2019年平潭海域气象、水质和赤潮监测信息,利用水温、盐度、溶解氧浓度等环境参数进行AOI与藻密度之间的拟合.结果显示,AOI与多种优势藻密度的拟合公式为ρ(AOI)=0.599 2 lgN-2.751 8(R^(2)=0.544 3),其中AOI与米氏凯伦藻密度的拟合公式为ρ(AOI)=0.791 1 lgN-3.685 6(R^(2)=0.802 6),通过2019年5月实际监测的数据进行验证,多种优势藻的AOI预测精度达到63%,米氏凯伦藻AOI的预测精度达到71%.研究表明,利用AOI对藻类赤潮进行预警和评价更快速、简便,可以进一步结合分析藻的群落结构和优势藻占比,预期可提高预警精度.Pingtan sea area of Fujian Province was taken as the research object to explore the correlation between apparent oxygen increase(AOI) and the density of red tide algae, so as to use AOI index for red tide warning. The red tide warning model of AOI is established. Based on the meteorological, water quality and red tide monitoring information in Pingtan sea area from 2013 to 2019 collected by the marine and fishery monitoring department of Fujian Province, and using environmental parameters such as water temperature, salinity, and dissolved oxygen concentration, the fitting between AOI and algae density is carried out.The results show that the fitting formula between AOI and the density of various dominant algae is ρ(AOI)=0.599 2 lgN-2.751 8(R^(2)=0.544 3).Among them, the fitting formula of AOI and the density of Kareniamikimotoi is ρ(AOI)=0.791 1 lgN-3.685 6(R^(2)=0.802 6).Verified by the actual monitoring data in May 2019, the AOI prediction accuracy of various dominant algae reaches 63%, and the AOI prediction accuracy of K.mikimotoi reaches 71%.The results show that AOI is more rapid and convenient for early warning and evaluation of algal red tide.It can be further combined with the analysis of algal community structure and dominant algal proportion, which is expected to improve the warning accuracy.

关 键 词:表观增氧量 赤潮 米氏凯伦藻 平潭海域 

分 类 号:X55[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象