级联型SVG的无差拍频率自适应快速重复控制  

Deadbeat Frequency Adaptive Fast Repetitive Control of Cascaded SVG

在线阅读下载全文

作  者:贾永博 刘江 郭军[1] JIA Yong-bo;LIU Jiang;GUO Jun(Shaanxi Railway Institute,Weinan 714000,China)

机构地区:[1]陕西铁路工程职业技术学院城轨工程学院,陕西渭南714000

出  处:《电力电子技术》2022年第3期101-104,115,共5页Power Electronics

基  金:2020年陕西铁路工程职业技术学院第一批科研基金(KY2020-29);2020年陕西铁路工程职业技术学院横向课题(KX2020-01)。

摘  要:为了提高级联H桥静止无功发生器(SVG)的动、静态性能,对电流预测算法和控制算法进行了设计。首先在d,q轴下建立了H桥级联型SVG的无差拍数学模型,针对补偿电流滞后预测电流两拍的问题,提前两拍进行补偿电流预测。为了减少补偿电流的稳态误差和传统重复控制的延迟,提出一种无差拍频率自适应快速重复控制算法。无差拍频率自适应快速重复控制既适用于N/2为整数,也适用于N/2为小数的情况,避免电网频率波动对控制造成的影响。然后在Matlab平台搭建了仿真模型并进行系统仿真,最后搭建了样机平台并对普通无差拍重复控制和所设计控制算法下补偿电流的波形进行了对比。仿真和实验结果均验证了所提算法的可行性和有效性。In order to improve the dynamic and static performance of cascaded H-bridge static var generator(SVG),the current prediction algorithm and control algorithm are designed.Firstly,the deadbeat mathematical model of Hbridge cascaded SVG is established under d,q axis.Aiming at the problem that the compensation current lags behind the prediction current,the compensation current is predicted two beats in advance.In order to reduce the steady-state error of compensation current and the delay of traditional repetitive control,a deadbeat frequency adaptive fast repetitive control algorithm is proposed.Deadbeat frequency adaptive fast repetitive control is not only suitable for the case where N/2 is an integer,but also suitable for the case where N/2 is a decimal,so as to avoid the influence of power grid frequency fluctuation on the control.Then the simulation model is built in Matlab platform and the system simulation is carried out.Finally,the prototype platform is built and the waveforms of compensation current under the ordinary deadbeat repetitive control and the designed control algorithm are compared.Simulation and experimental results verify the feasibility and effectiveness of the proposed algorithm.

关 键 词:静止无功发生器 无差拍频率 快速重复控制 

分 类 号:TN782[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象