检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张昱彤 翟旭平[1] 聂宏 ZHANG Yutong;ZHAI Xuping;NIE Hong(Key Laboratory of Specialty Fiber Optics and Optical Access Networks,Shanghai University,Shanghai 200444,China;Department of Technology,University of Northern Iowa,Cedar Falls 50614-0507,USA)
机构地区:[1]上海大学特种光纤与光接入网重点实验室,上海200444 [2]美国北爱荷华大学技术系,爱荷华州锡达福尔斯市
出 处:《红外技术》2022年第3期286-293,共8页Infrared Technology
摘 要:近年来动作识别成为计算机视觉领域的研究热点,不同于针对视频图像进行的研究,本文针对低分辨率红外传感器采集到的温度数据,提出了一种基于此类红外传感器的双流卷积神经网络动作识别方法。空间和时间数据分别以原始温度值的形式同时输入改进的双流卷积神经网络中,最终将空间流网络和时间流网络的概率矢量进行加权融合,得到最终的动作类别。实验结果表明,在手动采集的数据集上,平均识别准确率可达到98.2%,其中弯腰、摔倒和行走动作的识别准确率均达99%,可以有效地对其进行识别。In recent years,action recognition has become a popular research topic in the field of computer vision.In contrast to research on video or images,this study proposes a two-stream convolution neural network method based on temperature data collected by a low-resolution infrared sensor.The spatial and temporal data were input into the two-stream convolution neural network in the form of collected temperature data,and the class scores of the spatial and temporal stream networks were late weighted and merged to obtain the final action category.The results indicate that the average accuracy of recognition can reach 98.2%on the manually collected dataset and 99%for bending,falling,and walking actions,indicating that the proposed net can recognize actions effectively.
关 键 词:动作识别 双流卷积神经网络 低分辨率红外传感器 深度学习
分 类 号:TP319.4[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.8.51