布谷鸟算法在同轴度误差评定中的应用  被引量:1

Application of Cuckoo Algorithm in Coaxiality Error Evaluation

在线阅读下载全文

作  者:许家赫 陈岳坪[1] XU Jia-he;CHEN Yue-ping(College of Mechanical and Transportation Engineering,Guangxi University of Science and Technology,Guangxi Liu-zhou 545006,China)

机构地区:[1]广西科技大学机械与交通工程工程学院,广西柳州545006

出  处:《机械设计与制造》2022年第3期219-222,共4页Machinery Design & Manufacture

基  金:广西自然科学基金项目-面向智能制造的微钻头、齿轮精密检测等关键技术研究(2016GXNSFAA380111);广西自然科学基金项目-面向数控加工过程的接触式与非接触式集成的检测系统研究(2018GXNSFAA050085)

摘  要:同轴度误差是检验几何产品互换性的重要参考指标,对使用性能检测及产品品质的评价有着重大影响。粒子群算法(PSO)虽然应用广泛,但存在易陷入早熟和局部最优解、后期收敛较弱且缺乏全局收敛性等缺点。为使同轴度误差评定值精准度更高,以最小包容区域准则为框架,将同轴度问题转化为圆度和圆柱度误差评定,建立同轴度误差评定数学模型。运用一种适用于连续型优化问题,参数极少且局部搜索和全局搜索能力强的布谷鸟算法(Cuckoo Search Algorithm,CS)实现对同轴度误差的优化与评定。通过测量圆柱轮廓寸数据分析计算,对比文献数据结果进行验证,证明该评定方法的有效性及评定结果精确性,同时提供可视化结果。Coaxiality error is an important reference index for testing the interchangeability of geometric products,which has a significant impact on the performance testing and product quality evaluation.Particle swarm optimization(PSO)is widely used,but it is easy to fall into premature and local optimal solution,weak convergence and lack of global convergence.In order to im prove the accuracy of coaxiality error evaluation,the coaxiality problem is transformed into the evaluation of roundness and cylin-dricity error within the framework of minimum inclusive area criterion,and a mathematical model for coaxiality error evaluation is established.A Cuckoo Search algorithm(CS)with few parameters and strong local and global search ability is used to optimize and evaluate the coaxiality error.The validity and accuracy of the evaluation m ethod are proved by analyzing and calculating the data of measuring cylindrical contour inch and comparing with the results of literature data.At the same time,the visualization results are provided.

关 键 词:布谷鸟搜索算法 同轴度误差 可视化 最小包容区域 

分 类 号:TH16[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象