QTL analysis for plant height and fine mapping of two environmentally stable QTLs with major effects in soybean  

在线阅读下载全文

作  者:TIAN Yu YANG Lei LU Hong-feng ZHANG Bo LI Yan-fei LIU Chen GE Tian-li LIU Yu-lin HAN Jia-nan LI Ying-hui QIU Li-juan 

机构地区:[1]National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization,Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences,Chinese Academy of Agricultural Science,Beijing 100081,P.R.China [2]Novogene Bioinformatics Institute,Beijing 100015,P.R.China [3]School of Plant and Environmental Sciences,Virginia Polytechnic Institute and State University,Blacksburg,VA 24060,USA [4]School of Life Sciences,Liaoning Normal University,Dalian 116081,P.R.China [5]College of Forestry,Northwest A&F University,Yangling 712100,P.R.China

出  处:《Journal of Integrative Agriculture》2022年第4期933-946,共14页农业科学学报(英文版)

基  金:supported by the National Key R&D Program of China(2016YFD0100201);the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences。

摘  要:Plant height is an important agronomic trait, which is governed by multiple genes with major or minor effects. Of numerous QTLs for plant height reported in soybean, most are in large genomic regions, which results in a still unknown molecular mechanism for plant height. Increasing the density of molecular markers in genetic maps will significantly improve the efficiency and accuracy of QTL mapping. This study constructed a high-density genetic map using 4 011 recombination bin markers developed from whole genome re-sequencing of 241 recombinant inbred lines(RILs) and their bi-parents, Zhonghuang 13(ZH) and Zhongpin 03-5373(ZP). The total genetic distance of this bin map was 3 139.15 cM,with an average interval of 0.78 cM between adjacent bin markers. Comparative genomic analysis indicated that this genetic map showed a high collinearity with the soybean reference genome. Based on this bin map, nine QTLs for plant height were detected across six environments, including three novel loci(qPH-b_11, qPH-b_17 and qPH-b_18). Of them, two environmentally stable QTLs qPH-b_13 and qPH-b_19-1 played a major role in plant height, which explained 10.56-32.7% of the phenotypic variance. They were fine-mapped to 440.12 and 237.06 kb region, covering 54 and 28 annotated genes, respectively. Via the function of homologous genes in Arabidopsis and expression analysis, two genes of them were preferentially predicted as candidate genes for further study.

关 键 词:SOYBEAN plant height whole genome re-sequencing bin map QTL 

分 类 号:S565.1[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象