检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:M.Zhelnin A.Kostina A.Prokhorov O.Plekhov M.Semin L.Levin
机构地区:[1]Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences,Perm,614013,Russia [2]Mining Institute of the Ural Branch of the Russian Academy of Sciences,Perm,614007,Russia
出 处:《Journal of Rock Mechanics and Geotechnical Engineering》2022年第2期537-559,共23页岩石力学与岩土工程学报(英文版)
基 金:supported by 17-11-01204 project(Russian Science Foundation)。
摘 要:Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the present paper,a thermo-hydro-mechanical(THM)model for freezing of water-saturated soil is proposed to study the effects of frost heave and water migration in frozen soils on the formation of a frozen wall and subsequent excavation activity for sinking a vertical shaft.The governing equations of the model are formulated relative to porosity,temperature,and displacement which are considered as primary variables.The relationship between temperature,pore water,and ice pressure in frozen soil is established by the Clausius-Clapeyron equation,whereas the interaction between the stress-strain behavior and changes in porosity and pore pressure is described with the poromechanics theory.Moreover,constitutive relations for additional mechanical deformation are incorporated to describe volumetric expansion of soil during freezing as well as creep strain of soil in the frozen state.The ability of the proposed model to capture the frost heave of frozen soil is demonstrated by a comparison between numerical results and experimental data given by a one-sided freezing test.Also to validate the model in other freezing conditions,a radial freezing experiment is performed.After the validation procedure,the model is applied to numerical simulation of artificial freezing of silt and sand layers for shaft sinking at Petrikov potash mine in Belarus.Comparison of calculated temperature with thermal monitoring data during active freezing stage is presented.Numerical analysis of deformation of unsupported sidewall of a shaft inside the frozen wall is conducted to account for the change in natural stress-strain state of soil layers induced by artificial freezing.
关 键 词:Artificial ground freezing(AGF) Thermo-hydro-mechanical(THM)modeling Frost effects Frozen wall Shaft sinking
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63