检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡丹青 赵为华[1] Hu Danqing;Zhao Weihua(School of Sciences,Nantong University,Nantong Jiangsu 226019,China)
出 处:《统计与决策》2022年第6期21-25,共5页Statistics & Decision
基 金:国家级大学生创新训练计划项目(202110304005Z)。
摘 要:文章基于贝叶斯后验推理及遗传算法研究了线性回归模型多结构变点的变点检测方法,其中变点的数量和位置均未知。首先引入参数的无信息先验并基于后验分布得到变点信息的贝叶斯后验概率;然后基于后验概率定义一个施瓦兹-贝叶斯信息准则并应用遗传算法快速得到变点的个数及其位置,通过数值模拟验证了新方法的有效性和计算的快速性;最后,将所提方法应用于气象时序数据和股票交易价格两个实际数据的多变点检测问题,得到了有意义的结果。This paper investigates the detection of multi-structural change points in linear regression model based on the Bayesian posterior inference and genetic algorithm, where the number and location of change points are unknown. Firstly, the no-information priors of parameters are introduced, and Bayesian posterior probability of change point information is obtained based on posteriori distribution. Then, a Schwartz-Bayes information criterion is defined based on posterior probability, and the number and location of change points are obtained quickly by using genetic algorithm. The effectiveness of the new method and the speed of calculation are verified by numerical simulation. Finally, the proposed method is applied to the change point detection of meteorological time series data and stock price data, with the significant results obtained.
关 键 词:贝叶斯后验概率 多结构变点 施瓦兹-贝叶斯信息准则 遗传算法
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15