检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜宇桐 钱雪忠 宋威 Jiang Yutong;Qian Xuezhong;Song Wei(School of Artificial Intelligence&Computer Science,Jiangnan University,Wuxi Jiangsu 214122,China)
机构地区:[1]江南大学人工智能与计算机学院,江苏无锡214122
出 处:《计算机应用研究》2022年第4期1049-1053,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(62076110);江苏省自然科学基金资助项目(BK20181341)。
摘 要:方面级情感分析目前是基于图卷积神经网络(GCN)来整合句子的语法结构,它能够有效地解决长范围词汇依赖不准确的问题,但GCN却拥有不必要的复杂性和冗余计算。此外,它忽略了属性与上下文之间相对位置的关系。为此,提出了一种新的模型来解决上述问题。首先建立双向GRU层,接着使用位置感知转换增加靠近方面词的上下文词的重要程度,然后通过移除非线性和折叠连续层之间的权重矩阵来降低复杂性;再与特定屏蔽层进行融合实现单层MASGC结构,生成一种新的基于检索上下文的注意力机制;最后通过全连接层给出分类结果。该模型在五个数据集上进行了大量实验,实验结果表明其具有更高的准确率和更少的训练时间。At present,aspect-based sentiment analysis based on graph convolution neural network(GCN)integrates the grammatical structure of sentences.It can effectively solve the problem of inaccurate long-range lexical dependence.However,GCN has unnecessary complexity and redundant computing.In addition,it ignores the relative position relationship between attributes and context.This paper proposed a new model to solve these problems.Firstly,the model established a bidirectional GRU layer.Secondly,it used position-aware transformation to increase the importance of context words close to aspect words,and then reduced the complexity by removing nonlinearity and folding the weight matrix between successive layers.Thirdly,it fused the specific mask layer to realize the single-layer MASGC(masked simple graph convolutional networks)structure,and then generated a new attention mechanism based on retrieval context.Finally,it gave the classification results through the full connection layer.The model carries out a large number of experiments on five data sets.The experimental results show that it has higher accuracy and less training time.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7