检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:侯坤池 王楠[1] 张可佳[1] 宋蕾 袁琪[3] 苗凤娟[3] Hou Kunchi;Wang Nan;Zhang Kejia;Song Lei;Yuan Qi;Miao Fengjuan(School of Mathematical Science,Heilongjiang University,Harbin 150080,China;College of Computer Science&Technology,Harbin Engineering University,Harbin 150001,China;College of Communication&Electronic Engineering,Qiqihar University,Qiqihar Heilongjiang 161006,China)
机构地区:[1]黑龙江大学数学科学学院,哈尔滨150080 [2]哈尔滨工程大学计算机科学与技术学院,哈尔滨150001 [3]齐齐哈尔大学通信与电子工程学院,黑龙江齐齐哈尔161006
出 处:《计算机应用研究》2022年第4期1071-1074,1104,共5页Application Research of Computers
基 金:国家自然科学基金资助项目(61872204,61802118);黑龙江省自然基金资助项目(JQ2019F003);黑龙江省省属本科高校基本科研业务费科研项目(135309453)。
摘 要:联邦学习是一种新型的分布式机器学习方法,可以使得各客户端在不分享隐私数据的前提下共同建立共享模型。然而现有的联邦学习框架仅适用于监督学习,即默认所有客户端数据均带有标签。由于现实中标记数据难以获取,联邦学习模型训练的前提假设通常很难成立。为解决此问题,对原有联邦学习进行扩展,提出了一种基于自编码神经网络的半监督联邦学习模型ANN-SSFL,该模型允许无标记的客户端参与联邦学习。无标记数据利用自编码神经网络学习得到可被分类的潜在特征,从而在联邦学习中提供无标记数据的特征信息来作出自身贡献。在MNIST数据集上进行实验,实验结果表明,提出的ANN-SSFL模型实际可行,在监督客户端数量不变的情况下,增加无监督客户端可以提高原有联邦学习精度。Federated learning is a novel distributed machine learning approach,which provides a privacy protection way to learn a shared model without sharing each client’s private data.However,the existing frameworks of federated learning only work for supervised learning wherein each client’s data is labeled.Since collecting labeled data is difficult and expensive to obtain in the real world,the assumption of federated learning is not valid.To solve this problem,this paper proposed a semi-supervised federated learning model named ANN-SSFL based on an AutoEncoder neural network.The proposed model was extended from classical federated learning and allowed clients who might not have labeled data to participate the federated learning.The latent features which could be identified by the classifier were obtained by AutoEncoder neural network from unlabeled data,therefore unlabeled data could provide their data information to make their contributions.This paper conducted experiments on MNIST data sets.The experimental results show that the proposed ANN-SSFL is practical and effective.When the number of supervised clients remains unchanged,adding unsupervised clients can improve the accuracy of classical federated learning.
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222