基于混凝土坝接缝变形监测数据的时空关联规则挖掘方法  被引量:5

Spatio-temporal Association Rule Mining Method Based on Joint Deformation Monitoring Data of Concrete Dam

在线阅读下载全文

作  者:黄梓莘 陈波[2] HUANG Zi-shen;CHEN Bo(PowerChina Zhongnan Engineering Corporation Limited,Changsha 410014,China;College of Hydrology and Water Resources,Hohai University,Nanjing 210098,China)

机构地区:[1]中国电建集团中南勘测设计研究院有限公司,湖南长沙410014 [2]河海大学水利水电学院,江苏南京210098

出  处:《水电能源科学》2022年第3期109-113,共5页Water Resources and Power

基  金:国家自然科学基金重点项目(51739003);国家重点研发计划(2018YFC0407104)。

摘  要:面对传统混凝土安全监测分析方法针对单一测点展开研究难以应付与日俱增的数据量级等方面存在的不足,结合数据挖掘的有关知识,提出了一种基于混凝土坝接缝变形监测数据的时空关联规则挖掘方法,考虑单测点数据的时间序列特征和多测点数据的空间分布特征,分别从完整时段和总体结构的角度研究了混凝土坝接缝变形监测数据的时空关联挖掘方法,并以某寒区混凝土重力拱坝的接缝变形监测数据为例验证了所提方法的可行性和合理性,从而为结构健康服役提供有力判据,亦为工程运行管理提供富有价值的潜藏信息。Faced with the shortcomings of traditional safety monitoring and analysis methods for concrete dam, including the difficulty of conducting research on multiple monitoring points and dealing with the increasing volume of data, this paper combined the relevant knowledge of data mining to propose a spatio-temporal association rule mining method based on joint deformation monitoring data of concrete dam. Considering the time series characteristics of single-point data and the spatial distribution characteristics of multi-point data, the research on spatio-temporal association mining method based on joint deformation monitoring data of concrete dam was carried out from the perspective of complete time period and overall structure. The feasibility and rationality of the method were verified by using joint deformation monitoring data of a concrete gravity arch dam in a certain cold region. Therefore, the proposed method provides a strong criterion for the healthy service of the structure and valuable hidden information for the project operation and management.

关 键 词:关联规则 接缝变形 混凝土坝 数据挖掘 大坝安全监控 

分 类 号:TV642.44[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象