检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bogdan Nenchev Qing Tao Zihui Dong Chinnapat Panwisawas Haiyang Li Biao Tao Hongbiao Dong
机构地区:[1]NISCO UK Research Centre,School of Engineering,University of Leicester,Leicester LE17RH,UK [2]Nanjing Iron&Steel United Co.,Ltd.,Nanjing 210044,China
出 处:《International Journal of Minerals,Metallurgy and Materials》2022年第4期836-847,共12页矿物冶金与材料学报(英文版)
摘 要:Data-driven algorithms for predicting mechanical properties with small datasets are evaluated in a case study on gear steel hardenability.The limitations of current data-driven algorithms and empirical models are identified.Challenges in analysing small datasets are discussed,and solution is proposed to handle small datasets with multiple variables.Gaussian methods in combination with novel predictive algorithms are utilized to overcome the challenges in analysing gear steel hardenability data and to gain insight into alloying elements interaction and structure homogeneity.The gained fundamental knowledge integrated with machine learning is shown to be superior to the empirical equations in predicting hardenability.Metallurgical-property relationships between chemistry,sample size,and hardness are predicted via two optimized machine learning algorithms:neural networks(NNs)and extreme gradient boosting(XGboost).A comparison is drawn between all algorithms,evaluating their performance based on small data sets.The results reveal that XGboost has the highest potential for predicting hardenability using small datasets with class imbalance and large inhomogeneity issues.
关 键 词:machine learning small dataset XGboost HARDENABILITY gear steel
分 类 号:TG142.1[一般工业技术—材料科学与工程] TP181[金属学及工艺—金属材料]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175